13,697 research outputs found

    Measurement of the anomalous phase velocity of ballistic light in a random medium by use of a novel interferometer

    Get PDF
    Ballistic light, i.e., radiation that propagates undeflected through a turbid medium, undergoes a small change in phase velocity and exhibits unusual dispersion because of its wave nature. We use a novel highly sensitive differential phase optical interferometer to study these previously unmeasurable phenomena. We find that ballistic propagation can be classified into three regimes based on the wavelength-to-size ratio. In the regime in which the scatterer size is comparable with the wavelength, there is an anomalous phase-velocity increase as a result of adding scatterers of higher refractive index. We also observe an anomaly in the relative phase velocity, where red light is slowed more than blue light even though the added scatterers are made of material with normal dispersion

    Engaging Disconnected Young People in Education and Work

    Get PDF
    Project Rise served 18- to 24-year-olds who lacked a high school diploma or the equivalent and had been out of school, out of work, and not in any type of education or training program for at least six months. After enrolling as part of a group (or cohort) of 25 to 30 young people, Project Rise participants were to engage in a 12-month sequence of activities centered on case management, classroom education focused mostly on preparation for a high school equivalency certificate, and a paid part-time internship that was conditional on adequate attendance in the educational component. After the internship, participants were expected to enter unsubsidized employment, postsecondary education, or both. The program was operated by three organizations in New York City; one in Newark, New Jersey; and one in Kansas City, Missouri

    Measurement of angular distributions by use of low-coherence interferometry for light-scattering spectroscopy

    Get PDF
    We present a novel interferometer for measuring angular distributions of backscattered light. The new system exploits a low-coherence source in a modified Michelson interferometer to provide depth resolution, as in optical coherence tomography, but includes an imaging system that permits the angle of the reference field to be varied in the detector plane by simple translation of an optical element. We employ this system to examine the angular distribution of light scattered by polystyrene microspheres. The measured data indicate that size information can be recovered from angular-scattering distributions and that the coherence length of the source influences the applicability of Mie theory

    Cascades of Dynamical Transitions in an Adaptive Population

    Get PDF
    In an adaptive population which models financial markets and distributed control, we consider how the dynamics depends on the diversity of the agents' initial preferences of strategies. When the diversity decreases, more agents tend to adapt their strategies together. This change in the environment results in dynamical transitions from vanishing to non-vanishing step sizes. When the diversity decreases further, we find a cascade of dynamical transitions for the different signal dimensions, supported by good agreement between simulations and theory. Besides, the signal of the largest step size at the steady state is likely to be the initial signal.Comment: 4 pages, 8 figure

    Cavity ring-down technique and its application to the measurement of ultraslow velocities

    Get PDF
    We have developed a new ring-down technique that does not require a shutter to turn a probe laser on and off. With a rapid cavity scan we can measure a simple exponential cavity decay from which a cavity finesse can be found. When the cavity is scanned slowly, the cavity decay exhibits an amplitude modulation, and an analytic expression is derived for this modulation. With this new technique we measured the ultraslow relative velocity of the mirrors (of the order of micrometers per second) as well as the linewidth (~100 kHz) of the probe laser

    Phase-dispersion optical tomography

    Get PDF
    We report on phase-dispersion optical tomography, a new imaging technique based on phase measurements using low-coherence interferometry. The technique simultaneously probes the target with fundamental and second-harmonic light and interferometrically measures the relative phase shift of the backscattered light fields. This phase change can arise either from reflection at an interface within a sample or from bulk refraction. We show that this highly sensitive 5 phase technique can complement optical coherence tomography, which measures electric field amplitude, by revealing otherwise undetectable dispersive variations in the sample
    • …
    corecore